Comparison between Kalman Filter and PHD Filter in Multi-target Tracking
نویسندگان
چکیده
منابع مشابه
Clutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملA Comparison of Multi Hypothesis Kalman Filter and Particle Filter for Multi-target Tracking
Visual tracking of multiple targets is a key step in surveillance scenarios, far from being solved due to its intrinsic ill-posed nature. In this paper, a comparison of MultiHypothesis Kalman Filter and Particle Filter-based tracking is presented. Both methods receive input from a novel online background subtraction algorithm. The aim of this work is to highlight advantages and disadvantages of...
متن کاملBox-Particle PHD Filter for Multi-Target Tracking
This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable to deal with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-PHD filter reduces the numbe...
متن کاملMulti-target tracking with PHD filter using Doppler-only measurements
In this paper, we address the problem of multi-target detection and tracking over a network of separately located Doppler-shift measuring sensors. For this challenging problem, we propose to use the probability hypothesis density (PHD) filter and present two implementations of the PHD filter, namely the sequential Monte Carlo PHD (SMC-PHD) and the Gaussian mixture PHD (GM-PHD) filters. Performa...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Conference on Electrical Engineering
سال: 2012
ISSN: 2636-4441
DOI: 10.21608/iceeng.2012.31375